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Abstraet 

In a recent paper [Acta Cryst. (1982), A38, 248-252], 
Borie discusses extinction in absorbing materials. He 
argues that the problem has been improperly analysed 
by Becker & Coppens. It is shown here that Borie's 
argument is wrong: Becker & Coppens solution is 
correct as far as absorption-extinction coupling is 
concerned, for crystals of general shape. 

If x and y are the coordinates along the incident and 
diffracted directions, the propagation equations (in the 
case of intensity coupling) are: 
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Borie (1982) considers the case of a crystal whose 
edges are parallel to the incident and diffracted direc- 
tions, and looks for a detailed solution of (1). Such a 
case is of course purely abstract and is of no practical 
interest. Moreover, we are not interested in I(x ,y)  at 
any point at the surface of the crystal. The recorded 
intensity is the flux of the outgoing beam across the exit 
surface. Balibar (1968) and later Becker (1977) have 
shown that one can eliminate the boundary conditions 
by decomposing the beam into a superposition of point 
sources. Under the assumption that entrance and exit 
surfaces do not overlap significantly (small Bragg 
angle) we can write (Fig. 1) 

P =  f v I (S  --* M) dv m, (2) 

where I (S  --, M) is the intensity at M originating from 
the point source S. m is defined uniquely. The boundary 
condition for I 0 is 

I0 = ~(y). (3) 

In the kinematic limit, only one scattering occurs at m, 
leading to 
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Iok(X,O)=exp(--gX) 

Ik(x,O) = O exp [--(o + It)x]. 
(4) 

I have shown (Becker, 1977) that the solution for 
I ( S  --, M) is 

I ( S  --, M ) = a e x p [ - ( a  + #)(x + y)lJo(2aVCffy), (5) 

where J0 is a modified zero-order Bessel function. We 
get generally 

P = af dv exp[ - ( a  + lu)(tl + t~)]Jo(2a t~d~), (6) 

where t I and t~ are the path lengths along the incident 
and diffracted directions. The result (6) is very general 
and contains no approximation. It is identical to the 
result of Becker & Coppens (1974). 

Borie's argument is that (5) and (6) are incorrect. In 
the case of the geometry he studies, he gets a very com- 
plicated function [his equation (8)]: 

I(x ,y)  = exp [--(o + lu)(x + Y)l 
O0 

My argument is that 
y 

I(x ,y)  = o f exp [ - (o  + #)(x + v ) l J o ( 2 o v ~ )  dv (7) 
0 

since we have to take all points S that contribute to the 
outgoing beam at M. 

From the well-known expression 

J (z) = - P- (8) 
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Fig. 1. Laue geometry for a point source. 
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the partial derivative of (B 8) with respect to y is equal 
to (5). Therefore, we have two proofs that Borie is 
wrong in his argument. 

It may be quite difficult to obtain any analytical 
expression for I(x,y). But remember that we are only 
interested in the integral (6) often with an extra integra- 
tion over the divergence angle e. Therefore the correct 
procedure is to look for numerical approximations to 
the integral (6). In the case of strong absorption, we 
have shown (Becker & Coppens, 1974) that no general 
solution can be found. However, when #~r is not too 
large, we have shown that most of the coupling between 
absorption and multiple scattering can be dealt with by 
using the general extinction expressions and just re- 
placing the mean path length T = t~ + t~ by its absorp- 
tion-weighted value 

f dv T exp (-pT) dv, (9) T . = A v  

where A is the absorption factor. When dealing with 
accurate structure-factor determination, such condi- 
tions are generally fulfilled. 

In conclusion, very complicated expressions such as 
those derived by Borie, using Werner's method, are 
believed to be of little practical use. In contrast, I want 
to repeat that the method of point sources, which 
eliminates boundary conditions, is certainly of strong 
potential usefulness (Becker & Dunstetter, 1982). 
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Abstract 

Programs have been written to calculate TDS correc- 
tions from Long Wave eigenvectors and modelled 
frequency Dispersion of the acoustic branches (LWD 
approximation). Calculations on naphthalene crystals 
with neutral and with charged atoms were carried out 
to check the convergence of the lattice dynamical 
calculations and of the numerical integration proce- 
dures used in the programs. 

1. Introduction 

It has been shown by Kroon & Vos (1979; referred to 
as KV) that corrections of X-ray diffraction intensities 
for thermal diffuse scattering (TDS) can be calculated 
in very good approximation by the LWD method. This 
method has in common with the long-wave (LW) 
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method that only acoustic branches are taken into 
account and that eigenvectors for g = g(smaU) are used 
for all values of the wave vector g. In contradistinction 
to the LW method, the LWD method accounts for the 
real frequency dispersion vj(g) instead of taking the 
linear relation 

vj(g) = vj(g) g (1) 

where g is a unit vector along g and vj(g) is the acoustic 
velocity along g for branchj ( j  = 1-3). 

Frequency dispersion curves and eigenvectors can, 
in principle, be obtained by inelastic neutron scattering. 
Long-wave eigenvectors can also be deduced from the 
elastic constants of the crystal considered (Wooster, 
1962; Born & Huang, 1968). In favourable cases both 
quantities can be obtained by lattice dynamical 
calculations. Such calculations can, for instance, be 
made for crystals consisting of rigid-body molecules 
with uncharged atoms with the program LATDYN 
written by Kroon (1977). 

The LWD method can easily be incorporated in 
programs which compute TDS corrections according 
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